skip to main content


Search for: All records

Creators/Authors contains: "Callingham, J. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In this work, we study the optical properties of compact radio sources selected from the literature in order to determine the impact of the radio-jet in their circumnuclear environment. Our sample includes 58 Compact Steep Spectrum (CSS) and GigaHertz Peaked Spectrum (GPS) and 14 Megahertz-Peaked spectrum (MPS) radio sources located at z ≤ 1. The radio luminosity (LR) of the sample varies between Log LR ∼ 23.2 and 27.7 W Hz−1. We obtained optical spectra for all sources from SDSS-DR12 and performed a stellar population synthesis using the starlight code. We derived stellar masses (M⋆), ages 〈t⋆〉, star formation rates (SFR), metallicities 〈Z⋆〉 and internal reddening AV for all young AGNs of our sample. A visual inspection of the SDSS images was made to assign a morphological class for each source. Our results indicate that the sample is dominated by intermediate to old stellar populations and there is no strong correlation between optical and radio properties of these sources. Also, we found that young AGNs can be hosted by elliptical, spiral and interacting galaxies, confirming recent findings. When comparing the optical properties of CSS/GPS and MPS sources, we do not find any significant difference. Finally, the Mid-Infrared WISE colours analysis suggests that the compact radio sources defined as powerful AGNs are, in general, gas-rich systems.

     
    more » « less
  2. Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories. 
    more » « less